Questionnaire « simple »

Ci-après, on utilisera deux nombres complexes z et z' où : $a,b,a',b',\theta,\theta'\in\mathbb{R}$ $z=a+ib=|z|e^{i\theta}=|z|\big(\cos(\theta)+i\sin(\theta)\big)$ $z'=a'+ib'=|z'|e^{i\theta'}=|z|\big(\cos(\theta')+i\sin(\theta')\big)$ On rappelle quelques notations (ou on les apprend) : $arg(z)=\theta$ $|z|=\sqrt{a^2+b^2}$

Propriétés élémentaires
Montrer que :
(i) $z\bar{z} = 2\Re e(z)$ (ii) $ zz' = z z' $ (iii) $arg(zz') = arg(z) + arg(z')$ (iv) $\forall n \in \mathbb{N}, arg(z^n) = narg(z)$
N.B. : les formules sur les exponentielles sont supposées connues

Logarithme et dérivation

Questionnaire « simple »

Soit $I \subseteq \mathbb{R}$, $u: I \to \mathbb{R}$. Préciser l'ensemble de définition de la fonction $ln(u)$. En préciser l'ensemble de dérivabilité J et montrer que : $\forall x \in J \ (\ln(u))'(x) = \frac{u'(x)}{u(x)}$.
Dárivás da l'avagnantialla
Dérivée de l'exponentielle
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont supposées connues
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont supposées connues
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont supposées connues
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont supposées connues
Montrer que e^x est défini et dérivable sur $\mathbb R$ et que sa dérivée est lui-même. N.B. : la définition et les propriétés élémentaires concernant la fonction logarithme népérien sont supposées connues

Questionnaire « simple »

Dérivée d'une exponentielle quelconque
Montrer que : $\forall a \in \mathbb{R}^+, \forall x \in \mathbb{R}, f(x) = a^x \Rightarrow \forall x \in \mathbb{R}, f'(x) = ln(a)a^x$